
The Evolution of
Programming Languages

A Personal Perspective

Lutz Hamel

What’s Happening to PLs Today?
•  There is a qualitative shift if you look at

programming languages such as Python or
Ruby and compare them to languages
such as C and Java:
−  Type systems have become much more

flexible – dynamic typing
−  Data structures have become much more

abstract; similar to functional
programming languages
−  Full support for higher-order programming
−  Clean, succinct syntax

PL Comparison
•  In order to compare PLs we use two

benchmark programs

•  Simple things should be easy
−  seems kind of obvious but in Java for example

that is not true

•  The Polymorphic List
−  one thing that programmers do a lot is keeping

track of things
•  arrays
•  vectors
•  lists
•  tuples

‘Hello’
•  Here is a very simple program that allows

us to assess how easy it is to implement
something simple in a programming
language

•  The pseudo code is,

Begin
 Ask user for name.
 Print “Hello ” + name
End

The Polymorphic List
•  Polymorphic means “multiple shapes” – in

terms of lists that means that we can
have a list with items that are not
necessarily related (via types)

•  This not something only OO programmers
do but John McCarthy who designed Lisp
recognized early on that keeping lists of
things is vital to programming in general
−  hence LISt Processor

https://en.wikipedia.org/wiki/John_McCarthy_(computer_scientist)

The Polymorphic List
•  Pseudo code:

Begin
 Let orange [be of type Orange]
 Let apple [be of type Apple]
 Let pear [be of type Pear]
 Let list <- list-of(orange,apple,pear)
 Print list
End

PLs in 1950s/1960s

•  Lisp, FORTRAN, and Basic only survivors
•  Fortran and Basic not really general purpose

languages
•  only compound data structure is the array
•  no recursion

Source: https://en.wikipedia.org/wiki/History_of_programming_languages

Lisp
•  Hugely influential
−  recursion
−  garbage collection
−  higher-order programming
−  “programs are data – data are programs”
−  fundamental data structure: the list
−  dynamically typed (barely…)

Lisp – Easy Things are Easy

(princ '|Please enter your name: |)
(setq name (read-line *terminal-io*))
(princ '|Hello |)
(princ name)

Lisp – Easy Things are Easy

Lisp – Polymorphic List

(setq list '(orange apple pear))
(princ list)

Lisp – Polymorphic List

PLs in the 1960s/1970s

•  By far the most popular language from that era is C

•  Even today, 40+ years later, it is one of the most used
programming languages

C
•  A hugely successful language designed for

developing real time systems/OSs

•  hall marks
−  very tight syntax
−  pointers and pointer arithmetic including

function pointers
−  explicit memory management

C – Simple Things are Easy

#include <stdio.h>

void main ()
{
 char name[100];

 printf("Please enter your name: ");
 scanf("%s", name);
 printf("Hello %s\n", name);
}

C – Simple Things are Easy

C – Polymorphic List
•  VERY difficult!

•  Lists/arrays can only be of the same data
type, the only way to get different data
types represented in a list/array is to do
something creative with union/struct.

C – Polymorphic List

•  A simple polymorphic
list that allows you to
store ints and floats in
the same structure

•  It feels like a kludge –
and it is

•  C does not support
polymorphic lists

void main ()
{
 struct
 {
 enum {INT, FLOAT} tag;
 union
 {
 int i;
 float f;
 } u;
 } a[2];

 a[0].tag = INT;
 a[0].u.i = 1;

 a[1].tag = FLOAT;
 a[1].u.f = 1.0;
}

Static Type Systems
•  Pros: great at catching programming

errors early

•  Cons: over-complicates code

Question: are static type systems great at
catching bugs that get introduced because
of the over-complication of code?

PLs in the 1980s/1990s

Java
•  OO programming language modeled after C++

•  Design objective – be as OO as possible,
removing some of the design choices C++
made:
−  no global objects/functions
−  no multiple inheritance
−  a class structure that is rooted in Object
−  OO wrappers around I/O
−  “Everything is an object”

•  except for primitives like ints and floats

Java – Simple Things are Easy

import java.io.*;

public class Hello
{
 public static void main(String[] args) throws IOException
 {
 InputStreamReader sr = new InputStreamReader(System.in);
 BufferedReader in = new BufferedReader(sr);

 System.out.print("Please enter your name: ");
 String name = in.readLine();
 System.out.println("Hello " + name);
 }
}

Dogmatic OO?!?

Java – Simple Things are Easy

Java – Polymorphic List
abstract class Fruit
{
 abstract void print();
}

class Apple extends Fruit
{
 void print() { System.out.println("Apple"); }
}

class Orange extends Fruit
{
 void print() { System.out.println("Orange"); }
}

class Pear extends Fruit
{
 void print() { System.out.println(”Pear"); }
}

Java – Polymorphic List

class Basket
{
 public static void main(String[] args)
 {

 List<Fruit> list = new ArrayList<Fruit>();
 list.add(new Apple());
 list.add(new Orange());

 for(Fruit fruit : list){
 fruit.print();
 }

 }
}

Java – Polymorphic List

So much code that it does not even fit into a single terminal window!

Java – Polymorphic List
•  Needs class hierarchy

•  Needs generics as container

•  Lots of scaffolding, lots of code – lots of
possibility for error

PLs in 20XX
2015 2014

Source: http://spectrum.ieee.org/computing/software/the-2015-top-ten-programming-languages

Python
•  Python supports multiple programming

paradigms, including object-oriented,
imperative and functional programming
or procedural styles.

Python – Simple Things are Easy

name = raw_input("Enter your name: ")
print "Hello",name

Python – Simple Things are Easy

Python – Polymorphic List
•  Dynamic typing

•  “Duck typing”
(no base class
necessary)

•  Clean syntax

class Apple:
 def __str__(self):
 return "Apple"

class Orange:
 def __str__(self):
 return "Orange"

class Pear:
 def __str__(self):
 return ”Pear"

list = [Apple(), Orange(), Pear()]

for f in list:
 print f

Python – Polymorphic List

“Duck Typing”
•  The name of the concept refers to the duck

test, attributed to James Whitcomb Riley,
which may be paraphrased as follows:
−  An object that walks like a duck, swims like a

duck, and quacks like a duck is a duck.

•  In duck typing, a programmer is only
concerned with ensuring that objects behave
as demanded of them in a given context,
rather than ensuring that they are of a
specific class.

Source: https://en.wikipedia.org/wiki/Duck_typing

Lightweight OO
•  “Duck Typing” is a corner stone to make OO

more usable

•  In large projects class hierarchies evolve
−  VERY difficult to accomplish in OO systems

such as C++ and Java
−  much easier to handle in OO systems such as

Python and Ruby – class hierarchies consist of
multiple smaller ones not necessarily related
via a single base class

−  but polymorphic programming still available
because of “duck typing” and dynamic typing

Full Circle?

name = raw_input("Enter your name: ")
print "Hello",name

(princ '|Please enter your name: |)
(setq name (read-line *terminal-io*))
(princ '|Hello |)
(princ name)

Lisp – 1950s

Python - 2016

class Apple:
 def __str__(self):
 return "Apple"

class Orange:
 def __str__(self):
 return "Orange"

class Pear:
 def __str__(self):
 return ”Pear"

list = [Apple(), Orange(), Pear()]

for f in list:
 print f

Full Circle?
(setq list '(orange apple pear))
(princ list)

Lisp – 1950s

Python - 2016

Conclusions
•  New languages like Python, Ruby, R etc
−  dynamic typing
−  lightweight OO (“duck typing”)
−  clean, concise syntax
−  higher order
−  sacrifice strong typing for much more

abstract program structures (i.e. lists)

Question: Less code, more abstract syntax
and data structures = better code?

Thank You!
•  Presentation available on my homepage

−  http://homepage.cs.uri.edu/faculty/hamel/pubs/

