The Evolution of
Programming Languages

A Personal Perspective

Lutz Hamel

What’s Happening to PLs Today?

e There is a qualitative shift if you look at
programming languages such as Python or

Ruby and compare them to languages
such as C and Java:

— Type systems have become much more
flexible - dynamic typing

— Data structures have become much more
abstract; similar to functional

programming languages

— Full support for higher-order programming
— Clean, succinct syntax

PL Comparison

e In order to compare PLs we use two
benchmark programs

o Simple things should be easy

— seems kind of obvious but in Java for example
that is not true

e The Polymorphic List

— one thing that programmers do a lot is keeping
track of things

e arrays
 vectors
o lists

e tuples

‘Hello’

e Here is a very simple program that allows
us to assess how easy it is to implement
something simple in a programming
language

e The pseudo code is,

Begin
Ask user for name.

Print “Hello ” 4+ name
End

The Polymorphic List

e Polymorphic means “multiple shapes” - in
terms of lists that means that we can
have a list with items that are not
necessarily related (via types)

e This not something only OO programmers
do but John McCarthy who designed Lisp
recognized early on that keeping lists of
things is vital to programming in general

— hence LISt Processor

https://en.wikipedia.org/wiki/John_McCarthy_(computer_scientist)

The Polymorphic List

e Pseudo code:

Begin
Let orange [be of type Orange]
Let apple [be of type Apple]

Let pear [be of type Pear]
Let list <- list-of (orange, apple,pear)
Print list

PLs in 1950s/1960s

« 1951 - Regional Assembly Language 1959 - RPG

« 1952 - Autocode

1962 - APL

1954 - IPL (forerunner to LISP) 1962 — Simula
1955 - FLOW-MATIC (led to COBOL) 1962 - SNOBOL
1957 — FORTRAN (First compiler) 1963 — CPL (forerunner to C)

1957 — COMTRAN (precursor to COBOL) 1964 — Speakeasy (computational environment)

1958 - LISP
e« 1958 -7 OL 58

1964 — BASIC
1964 - PU/I

« 1959 - FACT (forerunner to COBOL) 1966 - JOSS

« 1959 - COBOL

1967 — BCPL (forerunner to C)

Lisp, FORTRAN, and Basic only survivors
Fortran and Basic not really general purpose
languages
« only compound data structure is the array
* NO recursion

Source: https://en.wikipedia.org/wiki/History of programming languages

Lisp

e Hugely influential
— recursion
— garbage collection
— higher-order programming
— “programs are data - data are programs”
— fundamental data structure: the list
— dynamically typed (barely...)

Lisp - Easy Things are Easy

princ '|Please enter your name: |)
setqg name (read-line *terminal-io*))
princ '|Hello |)

princ name)

(
(
(
(

hello.lsp hello.lsp~ mylist.lsp mylist.lsp~
$ cat hello.lsp

(princ '|Please enter your name: |)

(setq name (read-line *terminal-io*))

(princ '|Hello |)

(princ name)

$ clisp hello.lsp
Please enter your name: human#1234
Hello human#1234

ey |

Lisp - Polymorphic List

(setg list ' (orange apple pear))

(princ list)

hello.lsp hello.lsp~ mylist.lsp mylist.lsp~
S cat mylist.1lsp

(setq list '(orange apple pear))

(princ list)

$ clisp mylist.lsp
(OiANGE APPLE PEAR)
=

PLs in the 1960s/1970s

1968 - Logo 1972 — Smalltalk
1969 - B (forerunner to C) 1972 - Prolog
1970 — Pascal 1973 - ML

1970 - Forth 1975 - Scheme
1978 — SQL (a query language, later extended)

o By far the most popular language from that era is C

e Even today, 40+ years later, it is one of the most used
programming languages

C

e A hugely successful language designed for
developing real time systems/QOSs

e hall marks
— very tight syntax

— pointers and pointer arithmetic including
function pointers

— explicit memory management

C - Simple Things are Easy

#include <stdio.h>

volid main ()

{

char name[100];

printf ("Please enter your name:
scanf ("%$s", name) ;
printf ("Hello %s\n", name);

}

® S Terminal
S 1s
a.out hello.c hello.c~ 1list.c 1list.c~

S cat hello.c
#include <stdio.h>

oild main ()

{
char name[100];

printf("Please enter your name: ");
scanf("%s", name);
printf("Hello %s\n", name);

}

$ gcc hello.c
$./a.out
Please enter your name: human#1234

‘ ‘ ello human#1234

C - Polymor%hic List
. VERY difficult!

e Lists/arrays can only be of the same data

type, the only way to get different data
types represented in a list/array is to do
something creative with union/struct.

C - Polymorphic List

volid main ()

e A simple polymorphic {
list that allows you to struct
store ints and floats in { .
h t e enum {INT, FLOAT} tag;
the same structu union
+ It feels like a kludge - L
and it is float f;
e (C does not support } ;[;]

polymorphic lists

Static Type Systems

e Pros: great at catching programming
errors early

e Cons: over-complicates code

Question: are static type systems great at
catching bugs that get introduced because

of the over-complication of code?

PLs in the 1980s/1990s

1980 — C++ (as C with classes, renamed in 1983) 1986 — Erlang

1983 - Ada

1984 — Common Lisp
1984 - MATLAB
1985 — Eiffel

1986 — Objective-C

1990 - Haskell

1991 — Python

1991 - Visual Basic

1993 — Ruby

1993 - Lua

1994 - CLOS (part of ANSI Common Lisp)
1995 - Ada 95

1987 - Perl

1988 - Tcl

1988 — Mathematica
1989 — FL (Backus)

« 1995 - Java

« 1995 - Delphi (Object Pascal)
1995 - JavaScript
1995 - PHP
1996 — WebDNA
1997 — Rebol
1999 -D

Java

e OO programming language modeled after C++

o Design objective - be as OO as possible,
removing some of the design choices C++
made:

— no global objects/functions
— no multiple inheritance
— a class structure that is rooted in Object
— 0O wrappers around 1/0
— “Everything is an object”
» except for primitives like ints and floats

Java - Simple Things are Easy

import java.io.*;

public class Hello
{

public static void main (String[] args) throws IOException

{

InputStreamReader sr = new InputStreamReader (System.in);

BufferedReader in = new BufferedReader (sr);

System.out.print ("Please enter your name: ");
String name = in.readLine () ;

System.out.println("Hello " + name);

Dogmatic OO?!?

B

©O @ Terminal
$ cat Hello. java
import java.io.*;

public class Hello
{

public static void main(String[] args) throws IOException
{

InputStreamReader sr = new InputStreamReader(System.in);
BufferedReader in = new BufferedReader(sr);

System.out.print("Please enter your name: ");
String name = in.readLine();
System.out.println("Hello " + name);
}

i

$ javac Hello.java

$ java Hello

_Please enter your name: human#1234

Hello human#1234
u

Java - Polymorphic List

abstract class Fruit

{

abstract void print();

class Apple extends Fruit
{
void print () { System.out.println("Apple"); }

class Orange extends Fruit

{

void print () { System.out.println("Orange"); 1}

class Pear extends Fruit
{

void print () { System.out.println(”Pear"); }

Java - Polymorphic List

class BRasket
{
public static void main(String[] args)
{
List<Fruit> list = new ArrayList<Fruit>();
list.add (new Apple());

list.add (new Orange())

for (Fruit fruit : list) {
fruit.print ()

void print() { System.out.println("Pear"); }

}

class Basket

{

public static void main(String[] args)

{

}
3

List<Fruit> list = new ArrayList<Fruit>();
list.add(new Apple());

list.add(new Orange());

list.add(new Pear());

for(Fruit fruit : list){
fruit.print();
}

$ javac Basket.java
$ java Basket

Apple
Orange

Java - Polymorphic List

e Needs class hierarchy

e Needs generics as container

e Lots of scaffolding, lots of code - lots of
possibility for error

PLs in 20XX

Language Rank Types Spectrum Ranking Spectrum Ranking
1. Java &0 100.0 100.0

2. C 0L % 998 ————99.3
0% 994 95.5
96.5 ————83.5
913
84.8
84.5
. JavaScript 83.0
. Ruby
10. Matlab

Source: http://spectrum.ieee.org/computing/software/the-2015-top-ten-programming-languages

Python

e Python supports multiple programming
paradigms, including object-oriented,
imperative and functional programming
or procedural styles.

Python - Simple Things are Easy

name = raw input ("Enter your name: ")

print "Hello",name

= - - -
& = Terminal

S s

fruit.py fruit.py~ hello.py hello.py~ match.py match.py~
$ cat hello.py

name = raw_input("Enter your name: ")

print "Hello",bname

$ python hello.py

Enter your name: human#1234

Hello human#1234

s 1

Python - Polymorphic List

e Dynamic typing class Apple:

. def t 1f):
e “Duck typing” ot _str__(selt)

return "Apple"
(no base class

necessary) class Orange:
def str (self):
» Clean syntax ;gtura_"Orange"
class Pear:

def str (self) :

return ”Pear"

list = [Apple (), Orange (), Pear()]

for £ in list:
print £

G

@S @ Terminal

$ cat fruit.py

class Apple:
def __str__(self):
return "Apple"

class Orange:
def __str__(self):
return "Orange"

class Pear:
def __str__(self):
return "Pear"

list = [Apple(), Orange(), Pear()]

for f in list:
print f

.S python fruit.py

“Duck Typing”

e The name of the concept refers to the duck
test, attributed to James Whitcomb Riley,
which may be paraphrased as follows:

— An object that walks like a duck, swims like a
duck, and quacks like a duck is a duck.

e In duck typing, a programmer is only
concerned with ensuring that objects behave
as demanded of them in a given context,
rather than ensuring that they are of a
specific class.

Source: https://en.wikipedia.org/wiki/Duck typing

Lightweight OO

o “Duck Typing” is a corner stone to make OO
more usable

e In large projects class hierarchies evolve

— VERY difficult to accomplish in OO systems
such as C++ and Java

— much easier to handle in OO systems such as
Python and Ruby - class hierarchies consist of
multiple smaller ones not necessarily related
via a single base class

— but polymorphic programming still available
because of “duck typing” and dynamic typing

Full Circle?

Lisp — 1950s

princ '|Please enter your name: |)

(
(setg name (read-line *terminal-io*))
(princ '|Hello |)

(princ name)

Python - 2016

name = raw input ("Enter your name: ")

print "Hello",name

Full Circle? Lisp — 1950s

(setg list ' (orange apple pear))

] list
Python - 2016 (princ Lost)

[

class Apple:
def str (self):
return "Apple"

class Orange:
def str (self):
return "Orange"

class Pear:

def str (self):
return ”“Pear"

list = [Apple (), Orange(), Pear()]

for £ in list:
print £

Conclusions

e New languages like Python, Ruby, R etc
— dynamic typing
— lightweight OO (“duck typing”)
— clean, concise syntax
— higher order

— sacrifice strong typing for much more
abstract program structures (i.e. lists)

Question: Less code, more abstract syntax
and data structures = better code?

